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A CONTINUOUS SQUARE ROOT INFORMATION FILTER-SMOOTHER.
WITH DISCRETE DATA UPDATE

J a m e s  K .  Millcrt

A differential equation for the square root information matrix is derived and
adapted to the problems of filtering and smoothing. ‘]’hc resulting continuous
square root information filter (SRIF)  performs the mapping of state and process
noise by numerical integration of the SRI II’ matrix and admits data via a discrete
least square update. For comparison, the matrix differential equations for the
covariance  filter or continuous Kalman-Bucy  filter, the information filter, and the
square root covariancc  frltcr  are also derived.

Computational eficicncy,  accuracy, computer mcnrory  requirements and simplic-
ity of design are compared with other filter designs. Computational efllciency
secnrs to favor discrete filters since these }Iavc been dcvclopcd  to a high degree
of efficiency. The continuous SR1 F is cxpcctcd  to out perform discrete filters
with regard to accuracy and memory requirements bccausc  t}lcre is no need to
compute the state transition matrix and error control may be placed directly on
the elements of the SRIF  matrix. Elimination of the state transition matrix may
also eliminate numerical problems that have been experienced in computing this
matrix. Simplicity of design favors the continuous SRIF particularly w},cn  the
same numerical integration algorithm used to propagate the state is used to in-
tegrate the SRIF  matrix. Also, the introduction, of process noise to the filter as
a differential equation enables the investigation of a wide variety of noise models
without the explicit solution of the differential equation.

1 N T R . O I 3 U C T I O N

A data filkr proccsscs  data in order to OIJ(  ain an ,c$~~matc of paramckrs that are related to the
data by a mathematical model. l)ata filters (., .Ilst in ma),, forms and usc the covariancc  of the state
pararnctcrs, or some equivalent rcprcsentatiJll, along wit}) the measurements and a simulation of
the mcasurcmcnts  including partial derivatives, to obtain the desired estimate. l)ata filters may bc
separated into two categories depending on how the state covariancc is evolved as a function of time.
Continuous data filters  evolve the state covariancc  by integration of a matrix differential equation or
lticatti equation and discrete data filters evolve the state covariancc  by mapping over a finite  time
interval. l)iscrcte filters are thus obtained by solving the continuous equations over some finite time
interval. ‘l’he covariance matrix of the state may bc represented by its inverse or information matrix
or square root factorization of either of these matrices.

In the formulation of t}]c filter dcscribcd  in this paper, systcm  dynamics and process noise arc
described by differential equations. Ior the simple case of exponentially time correlated process
noise, both the continuous and discrete formulations are dcscribcd.  Data is processed sequentially
similar to the discrete Kalman-llucy  filter. ‘J’he matrix differential equation for the mapping term of
the SIUF matrix is derived from the systcm  dynamics. The process noise term and data updal,c  term
arc obtained by transformation of the corrcspording  I crl)]s  in either the covariancc  or information
filters using sirnplc matrix identities. l)ual  rel? io!)sllips arc shown for the continuous filters and
these  arc exploited in the dcvclo])mcnt,  of the filkr.
—
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In order to complctc  the continuous SRIF description, the problems of smoothing, discrete pro-
ccss noise update, iteration for solution, and nurncrica] integration of the SRlh’ matrix are described.

S Y S T E M  D Y N A M I C S

‘l’he system  dynamics may be described as a linear perturbation of a reference function of the
state variables. Given the nominal values of the state variables described by the function k(t) and a
perturbation of t,hc state (6x) at the initial epoch (to), the perturbed state variables arc described
by

z(t) = i(i) + @(t, to) C$x(to) (1)

where the state transition matrix (d)) is given by

‘l’he state transition matrix may be obtained as a solution of the following differential equation or
by numerical integration.

r9x(t  ) _ ai(t) h(t)

C5k(to) – a(t) X:(to)

where

‘1’hc  above differential equation describing the evolution of the state variation may be generalized to
include other parameters and process noise.

X= FX+Gfl (3)

w}]cre G is the mapping of Q, the process noise. IIcrc, the b’s have been dropped and the variation 6Z
is rcprcscnted  by X, ‘1’hc  state vector variation X may bc gcncralizcd  to include constant parameters
(y) and stochastic parameters (p) as well as the dynamic state variables (z). q’hc process noise (!2)
contains white  noise (w) on the stochastic parameters. ‘,1’hus  wc have

‘=[1 “l!
‘]’hc stochastic parameters (p) provide a means of introducing
‘1’hcsc arc defined by scalar difrcrcntial  equations of the form

ji=–:pi+. wi

(4)

process noise into the state variables.

(5)

w}lcrc Ti is the correlation tirnc and Wi is the white noise associated with the i’th stochastic parameter,
“1’bus, white  noise is introduced directly to the parameter p and indirectly to the state via the mapping
matrix 1(’.

An estimate of the state is obtained from a mathcrllatical  model of the system dynamics that
include measurements processed by a data filter. ‘J’hc “best” estimate of the variation of the state
(~) is dcscribcd  by the following equations,

x = Fx + Gh +- 1{2 (6)

j=z–]]j (7)
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(8)

where }{ is the Kalman  gain, f] represents an estimate of the process noise, Z arc the actual
mcasurcrncnts  and 11 is the matrix of data partials. ‘1’hc Kalman  gain is computed as a function
of the mcasurcmcnt  error, the data partials and the state error covariancc  (1’). ‘1’bus, in order to
obtain a complctc  set of equations that would enable the computation of the estimated state wc
need an equation for the Kalman  gain and an equation for evolving 1’ as a function of time.

DERIVATION OF CONTINUOUS FILTER. EQUATIONS

‘1’hc covariancc  of the state estimate is defined by the expcctcd  value reprcscntcd  by

P = E{ XX’T} (9)

As an alternative, wc may compute the information matrix (A), the square root of the covariancc
(S), or the square root of the information matrix (R). ‘J’hc equations that define these matrices arc
givcll by

],= A-l (lo)

‘l’bus, wc arc interested in obtaining differential equations of the for~n

w}~crc the subscript m refers to t}lc mapping terms, the subscript g refers to process noise terms,
and the subscript d refers to the data update terms.

_MaJ~@ q’erm
‘J’hc evolution of the covariance  as a function of time [I] may bc obtained by mapping the state

covariancc  obtained at some epoch (to) to some time in the future (i) with the state transition
matrix.

l’(i) = @(i, to) ]’(to)  a’(t,io)~’ (17)

‘1’aking the derivative with respect to time wc obtain

Since the state transition matrix is obtained by integrating

(19)ti)(i, to) = l“(t)  a)(t,to)

wc obtain after substitution
i’m == 1’1’ +- 1’1’7’1’ (20)

Jrqccss Noise Term
In the covariancc  matrix diffmcntial  equation, process noise enters as a simple addition to the

covariance. ‘1’hus  wc have
P(t + At) == P(t) +  GAQGq’ (21)
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where AQ is the covariancc  of the process noise admitted OVCI

AQ=Q Ai

where Q is the rate of accumulation of process noise. ‘J’}Ius,  in

the t,imc interval At and

the continuum wc have

(22)

l)ata Update ‘J’crm

‘l’he discrete covariancc update may bc obtained assuming an additional mcasurcmcnt  IIn+l
is added to a previously determined cstirnatc  based on rncasurcrncnts  IIn with covariancc I’n.  ‘1’hc
derivation is given in many references [2,3] that are available,

}’n+l = [H:’AW. H. + ]];;. IAW.+IH.+l] ‘] (23)

in the notation used here, IIn is a matrix wit}) n rows corresponding to the measurements and m
columns corresponding to the state parameters. ]]n+l  is a row matrix of dimension m. We also
h avc for the covariancc update,

l;-; l = J’;] + I];tl AWn+.]  lln+ 1 (24)

and since
A = ])-1

An+l = An + 11~~1 AW.+l  ll.+] (25)

over the time interval At bctwccn mcasurcrncnts,  information accumulates at a rate W and

AWn~l  = W At (26)

An+] – An = n;; .l WAt Hntl (27)

l)ividing by At and taking the limit as At approaches zero,

Am = 117’ w 11 (28)

wc obtain a differential equation for the evolution of the informatiorr matrix due to addition of data.

_ILcast Square l)ata UP*

In order to complete the filter equations, we need an algorithm for processing the measurements
t,o oLrtain a best cstirnate  of the stat,c. “1’hc discrete forln of the Kalman  update algorithm is given
by [2]

AA’ = ~ll~’(AW-]  + IIFII’l’)-l (29)

An equivalent expression is obtained by usc of the matrix inversion lemma.

[
Al{ = ?-~ i- 117’ AWII 1 ‘1 ]] ’]’Aw7 (30)

If wc admit the data at a rate W over a time interval At wc have

[
AK = ~-] + 117’ WAi 11 1 ‘1 117’  WAi (31)

where  13 is the covariance at the beginning of the interval prior to processing the data. l)ividing
through by At and taking the limit as At approaches zero wc obtain

(32)

a diffcrcntia]  equation for the Kalrnan rrpdatc.
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FILTER> DIFFERENTIAL EQUATIONS

Collecting the tcrrns  derived ak)ovc,  we have the following matrix differential equation or Ricatti
equation for the covarian cc filter,

K = 1’137’ w (34)

and for the information filter,
A= fim+liq+ll’r’wll (35)

‘1’hc  data update term (fid) is missing from the covariancc  equation and the mapping (Am) and
~)roccss  noise (A~)  terms arc missing from t,hc information filter equation and these may bc obtained
by transforrnation using matrix identities. For the covariancc  and information equations, wc need
the following matrix identities.

1’A = 1

Applying Lhcsc identities to the above matrix diflcrcntial  equations, wc have

~ = II’]’+ l’l”q’ ; G Q G7’ – 1’117> W 111’ (39)

K == J’lll’ w (40)

‘J’}IC covariancc  filter in this form is called the continuous form of the Kalman-llucy  filter. For the
information filter, wc have

A = –AII’  – F’J’A – A GQG7’  A i- 117’ W II (41)

A similar set of matrix identities may bc dcvclopcd for the square root covariance  filter (SRCF)
and i,hc square root information frltcr (Sll,ll’) that may bc used to transform the covariancc  i,irnc
derivative. ‘1’hcsc identities arc derived by Scllccrcs in l{cfcrcncc 4 and the derivation is rcpcatcd
here.

1’ = ssq

jl ~ $s’1’ +. SST

[L$s’’-~l+l[ss”sN-N ‘0
liccausc  of syrnmctry  associated with the above terms in the brackets, both terms in the brackets
r~mst bc zero and

j ~ ;js.~’ (43)

A similar derivation for the S1tIF matrix gives !JIc identity

(44)



Applying these identities to the covariancc  and information filter equations gives Lhc following matrix
diflcrcntial  equations for the S1U2F and SRIIJ matrices.

.$’ == ; [II’S + S.S’q’ll’q’S-q’]  + :(7Q (lq’s-’]’ – :SST’l]’l’W]]S (45)

it=–~[IiIIT +Ii-l IYrl’Iiq’It] –~IiGQG1’IP’Ii.+ ~R-q’IIrl’WII (46)

‘J’hcmappin  gtermsforboth  l,hc SltCJ’  and Sltl IJ contain matrix invcrscs. ‘I’hcsc  may bcelirninated
by introducing a different factorization of the square roots. Consider the mapping of the square root
covariance  from an initial epoch to to the epoch t.

l’(t) = @(i, to) So’” qi,io)~’ (47)

‘1’hc mapped square root is simply
s(i) = @(t, to)s(t~) (48)

‘1’aking the derivative with respect to time,

s(t) = &(i, to) S(tc))

s(i) = i)(t,io)o(t,to)-”is(t)

.!(i) == I“(t)s(t) (49)

l’or the S1{,1 II’ matrix wc have
S(t)n(t) = 1

s(t)R(Q -+ S(tpi(l) = o

k(t) = –R(qs(t)s’(t)-’
k(t) == –R(t) F(t) (50)

Making the above substitutions for the mapping tcrrns, the matrix differential equations and Kalrnan
gain for the covariancc, information, square root covariancc and square root information filters arc
summarized below. l~quations  for the discrctc  formulation of these frli,crs  arc given in Refcrcncc  [5].

Covariancc  (Kalman-llucv)  Iiltcr

(51)F = ~,’~> + ]~l’q’ + ~; Q @’ – ~J]]~’ w ]]])
]{ = p }]’J’ w (52)

~orrnation  I“ilter
h = –Al’ -- F’J’A  – A GQGY A + 11’” W 11 (53)

]< =. A-l ]]7’ w (54)

&qarc Root  Covariance  Filter (SItC1:)

S = II’S + ;G Q G’J’S-7’ – &Hq’WIIS (55)

K = S’S’J’1]’J’  w (56)

~~arc RooJ information Filter (S1tl F]

(57)

(58)

6



‘1’}Ic  data update and process noise terms of the above filter equations exhibit a symmetry or
duality when the information filters arc compared with the covariancc filters. For example the data
update term of the information filter may bc obtained by replacing Q with W and G with 117’ in the
process noise i,crm of the covariancc  filter. Also, the process noise update term of the information
filter may bc obtained by making similar rcplaccmcnts  in the data update term of the covariancc
filter. ‘1’hcsc  same dual relationships exist for the filters in their square root form. ‘lJhc existence
of duality enables algorithms designed for data updating to bc used for process noise updating and
vice versa. For example, the Potter square root covariance data update algorithm may bc used to
update process noise in t}lc SRIF.

CONTINUOUS SRIF WITH DISCRETE DATA UPDATE

‘1’hc  selection of a filter algorithm depends on many competing criteria related to accuracy, com-
putational cfiiciency, memory utilization and simplicity of design. Consideration of accuracy seems
to favor factorized or square root filters and computational cfflcicncy  seems to favor discrctc  filters.
With  tbc proliferation of personal computers, computational cficicncy  has bccomc lCSS important
since computer processing time is relatively cheap. Simplicity of design and memory utilization
favor a continuous approach to filtering. “1’hc systcm dynamics and data partial derivatives enter
directly into the filter and the need to compute a state transition matrix is completely eliminated.
IIowcvcr, data is generally in the form of discrctc  data points and may not bc easily transformed to
the continuous form. This suggests a hybrid approach which allows system dynamics and process
noise to bc treated continuously and data to bc treated as a discrctc  update.

‘J’hc continuous SRItI’, with discrctc  data rr})datc  is sclcctcd  for dcvclopmcnt  of a filter algorithm.
information filters have the advantage that apriori on the constant parameters dots not have to bc
p]accd on the filter until after all the data is processed. IJuring  filtering, the information arrays may
bc sparse resulting in lCSS cornputat  ion. ‘J’hc S1{,1  l’ algoritll,n  dcscribcd  below also includes provision
for s]noothing  and discrctc  process noise rrpdatc.
])iscretc ])ata Update

‘J’hc SRIF  discrctc  data update algorithm follows directly from the least square data update.
‘1’}lc  least square solution is given by [3]

x  = []]:’ AWn 11.] ‘1  11:’ AWn ~n

‘J’hc rncasurcmcnts  can bc normalized by factoring AWn into

and

(59)

(60)

IIy inspection wc can scc that
1<. = ~Aw. 11,,

so after substitution wc have
i = (R:Rn) – 1 R: @wn Zn

For the first m mcasurcmcnts,  the nurnbcr of estimated parameters (m) is equal to the number of
mcasurcmcnts  (n) and Rn k square.

x = Ii;] ~in (61)

Multiplying through by 1/,, gives the data cqrration

.

(62)



where ij,l is the normalized mcasurcmcnt.  A ncw  mcasurcrncnt can bc appended to the data equation
resulting i n

[@=],.+lx=[Ll

(63)

Adding additional mcasurcmcnts  results in the row dimcnsiorr  of R cxcccding  the column dimension.
‘1’})c  information matrix would then bc given by

Am = R:;z Rn,), (64)

where the row dimension n. cxcccds the column dimension m. Since lt~m is not  unique, it can bc
rcplaccd  by an upper triangular Rm of dimension m by m ,

Am = R; l& (65)

‘J’hc IIouscho]dcr  algorithm enables onc to obtain the matrix I&, without explicitly computing An,.
If 7’ is an orthogonal

then wc h avc

matrix which has the proper-ty

ymy? = ] (66)

Am = li:~7’1’7’I&v, (67)

“J’}]c  IIouscho]dcr  algorithm finds a 7’ that gives lt~ when mrrltiplicd times Itnm. ‘1’hc right side of
the data equation (rj) is is also rnultiplicd  by 7’ to obtain a ncw data equation in upper triangular
form. ‘J1}IC  IIouscholdcr  algorithm thus  serves the sarnc purpose in updating the SRIF matrix and
right side as the Kalman  update algorit}~m  serves to update the covariancc and state estimate. An
updated state estimate can bc obtained from the data equation by simply inverting the SRI]{’ matrix
and multiplying times the right side.
~g~ltirluous l’recess Noise Upw

‘J’hc continuous process noise rrpdatc  enables onc to introduce process noise dircct,ly  as a dif-
ferential  equation to the filter, ‘J’his  form is convenient for describing process noise and enables
the investigation of a wide variety of process noise models without explicitly solving the differential
equation, ‘J1hc continuous process noise update term in the information filter has the same form
as the data update term in the covariancc filter. ‘1’hc l’otter square root covariance  data update
algorithm [6] provides a means of performing a scalar data update to the square root covariancc
filter. IIccausc  of duality, the discrctc  l’otter data update algorithm can bc adapted to the SRIF
for a discrctc  scalar process noise update. ‘J1aking tbc limit as At approaches zero enables onc to
convert the discrctc  process noise update to a continuous process noise update.

Starting with the process noise update term in the information filter wc have

(68)

and in the discrctc  form,
A = ~ – fi GAQGr~’  fi (69)

where the notation for An, tbc information matrix before the update or apriori,  is rcplaccd  by ~
and Ani I is rcplaccd  by A. Since

A = liq’lt

(70)



If AQ and G arc assumed to be diagonal (i.e. uncorrclatcd  process noise parameters) then cacb
diagonal clcmcnt  of AQ is given by a scalar Agi. l)ropping  the i subscript, wc have for the i’th row
of 1/ and diagonal clcmcnt  of AQ,

: – Aqvv’]’  = (1 – fkrvvq’)z

] – f@v’l’  = ] – 2Aa VVrJ’ + -  &2 VV7’VV’1’
Since V’l’V is a scalar, the solution of the above quadratic equation is given by

Aw . 1 –  ~~vAq
V’l’V

(71)

(72)

]t’~i  = fiq’(]  –  Aa VVT)T’ (] - A~ VVrJ’)i?

It= (] –  A~ VVT’)it

It ~ k– A& fiG@fi7’fi (73)

in the continuum wc have
~t = -Ackfi GG7’  fiTfi (74)

and

Ad = ;(1 – v’J’vAg)-:  Ag (75)

In ihc limit as Aq and At go to zero wc have

Aii=; Aq=; q (76)

and

ii= –; q RGG7’1?’1( (77)

If wc bavc more than onc stochastic parameter, the q’s can be assembled into a diagonal matrix Q
and wc have

j< = – ~ ~ qilt GG7’ liq>li = – ~ 1( GQG3’ llq’lt (78)

‘l’his is the same equation as derived above for the continuous SRIF process noise update only wc
bavc assurncd diagonal Q and G.
])iscrctc  l’roccss  Noise Upd-

A problcm  with integrating the process noise differential equation is the computer tirnc required
to irrt,cgratc  the SRIII’ matrix. An alternative to introducing continuous process noise to the filter is
i,hc discrctc  process noise update [7]. ‘1’hc frequency of the discrctc  update is sclcctcd  to approximate
the accuracy of the continuous update. Over the time interval bctwccn discrctc  process noise updates,
the stochastic pararnctcrs  arc assumed to bc constant and enter into the mapping the same as other
constant pararnctcrs.  “1’hc discrctc  process noise update consists of imposing an analytic solution for
the process noise variance over a fixed time interval as an impulsive delta function. q’his method is
equivalent to integrating the process noise differential equation by trapezoidal integration.

For the simp]c case of cxponcntia]l  y time correlated process noise, an analytic solution {8,91
for cacb process noise parameter as a
equation.

function of time is obtained from the following diffcrc;tia~

dp
z“ = ( )

+ p+ Lo(t) (79)
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‘1’hc solution is

-9,(,.)+- ]C’%%(<)d(p(i) = c— (80)
10

‘1’hc variance of p(t) is ,givcn by

o:(t) = c =+.;(,.,+],=+.:(,,,, (81)

to

‘J’hc ljroccss  noise variance may also bc obtained by solution of the following differential equation,

do;(i)
dt =

( )
; u;(t) + g(t) (82)

wbcrc
~ _ Zfl:

T

and 0$ is the steady state noise variance. In diflercncc equation form these give

(83)

(84)

where

‘1’bc data equation
tj+ j is given by

pj+l z Mpj +Wj

2
‘Pj+l  =

M2G=;j  +- Aq

()
A q  =  ( 1  –  M2)o: % ~:- a:

- At
M=c?

At=ij~l–tj

obtained as a result of integrating the square root  information matrix from ~j to

[

I(P Iipz J(PY
H 1

~)j
Iii-p L! ILy Xj+~ = fij (85)

For the discrctc  process noise data update, the value of the stochastic parameters (~j ) arc held
constant over the interval tj to ij+l while the SRIF  matrix  is rnwd h numerical  inWwtion.  At
the tirnc tj+l, the process noise variance accumulated over this same time interval, is introduced via
the following data equation as a discrctc  impulse.

lt~ Wj = fi. (86)

where ,

Rcp]acing  tij by the equation in terms of Pj and Pj+ 1 wc llavc

Itu$j+] – lLMfij = & z o (87)

‘J’hc updated data cquat,ion is obtained by partitioning and combining with the above noise data
equation.

[

–RUM  IL O 0
lb o l& I(PV
Rzp o Iir Rry

o 0 0 Ry

10

0

[1[1Pj

Pj+l =
Xj+l 4j

y

(88)



‘J’hc data equation is
noise tcrrns  to obtain

partially triangularized  over the first columns corresponding to the process

(89)

where the plus superscript is introduced to indicate a change ill the numerical values after the
process noise update. ‘1’hc stochastic pararrrcter  update is completed by stripping off the top rows
corresponding to pj, those containing the asterisk, and saving thcrn  along with the right side (fi~)
for smoothing.

~ution  Al~orithn~

‘J’he filter is first initialized with apriori  information on the state and stochastic parameters,
Apriori information on the constant parameters is saved and combined after the data is processed.

R(to)  = fi(to) (90)

where

[

}tpo l~pox.o ~ipoy
i(io) = o Itxo Iiroy 1 (91)

0 0 0

‘J’he reference state (~) is set equal to the apriori estimate of the state (~) and the nominal
state as a function of time, comprrtcd measurements, and partial derivatives arc computed for the
rcfcrcncc  state. ‘J’hus wc have for the initial data equation,

lt(irr) i(to)  = o

IIata is proccsscd and the state and R are mapped via the current state SRIF to thc final epoch tf.

Next, the apriori on the constant
SRI]’ matrix for the solution at if

‘1’bc solution at epoch is obtained

R(if) i(tf) = rj(tj) (92)

parameters (~~)  is combined with R(tj ) to obtain R,(ff),  the
q’hc solution is given by

i,(if) = lt; l(fj) rj, (ij) (93)

X.(ij) = X(i, ) + i,(tj) (94)

by smoothillgj  or in the abscncc of stochastic parameters may
be obtained by integrating the solution at tj back to tO. “1’hc procedure for obtaining smoothed
cstirnatcs  is dcscribcd  below. If the mapping of the state is linear, the solution obtained try a single
iteration is the correct solution and no further processing is required, q’hc linearity _of the mapping
can bc chcckcd  by passing the solution through the data using the best estimate X, (to) as a ncw
rcfcrcncc.  If a subsequent solution is attempted and rcsu]ts  in zero update, convergence has been
ac}licvcd. Ot}lcrwisc, the process is repeated until the update is acceptably small. q’hc purpose of
iteration is to base the final solution on a reference that is as C1OSC to the true state as possible. If
the best estimate of the state is used as a reference, the rncasurcmcnt  residuals are minimized and
the affect of nonlinearity is also minimized.

‘1’hc  procedure for iterating the solution is Newton-ltaphson and tbc following algorithm is used.
At the conclusion of the k th iteration, the ccmrcction computed from the data equation is given by

Xk(tj) = lt;](~f) fik(~f) (95)
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‘1’dissolution isrnappcd back tocpoch and wchavc  for the new rcfcrcnccstatc

(96)

‘J’hc data equation at thcbcginningofthc  k+-] itcrationisgivcn  by

Using t}]c same proccdurc  dcscribcd  above, the data is processed again and the state and R arc
mapped via the current state SRIF  to the final epoch if. A ncw solution is computed and this
l)roccdurc  isrcpcatcd until convcrgcncc isobtaincd.

CONTINUOUS SR,IF SMOOTHING ALGORITHM

Often, the objcctivc  of a data frltcr is to obtain a filtered best estimate of the state at the cnd
of the data arc or time of the last data point. Somctirncs  solutions arc nccdcd at other times, SUC}I
as at the beginning of the data arc or at some time interior to the data arc. ‘1’hcsc  solutions are
obtained by smoothing, If there is no process noise, these interior solutions may be obtained by
dci,crministic  mapping of the filtered solution. For an epoch state filter, deterministic mapping is
performed by simply integrating forward in time; but, for a current state filter the integration would
bc backward in time.

An epoch state solution is nccdcd for iterating solutions to minimize the effect of nonlinearity
and for c}lccking the solution by examination of post-fit data residuals. An epoch state smoothed
best estimate, or for that matter a smoothed solution at any epoch, can bc olrtaincd  by appending
constant parameters to the state that represent the values of the dynamic state and stochastic
l)ararnctcrs  at the desired epoch [10]. ‘J1hcsc may bc conveniently inclrrdcd at the top of the list of
y parameters and ordered the same as the stochastic and dynamic state parameters they rcprcscnt.
Since these parameters arc constant and do not afl’cct the data, entries in the l’ matrix and 11
matrix arc normally zero. ‘1’hc onc cxccption  is at the smoothing epoch. At this time, a constraint
is placed on the SRllI’ matrix to force the constant smoothing parameters to equal the dynamic
parameters that arc being smoothed. ‘l’his may bc accomplished by introducing a dummy data
point for each smoothed parameter that forces equality with the corresponding dynamic pararncter.
‘J’hcsc dummy mcasurcmcnts  arc proccsscd thus forcing unity correlation bctwccn  the smoothed and
dynamic parameters at the smoothing epoch. ‘J1his type of smoother is rcfcrrcd  to as a fixed point
slnoothcr.

‘1’}Ic  smoot}lcd epoch state solution for the state aud stochastic parameters head the list of
constant y pararnctcrs  and wc have

[ 1

po
y= Xo (98)

Y.

po = p(to)

where p. and X. arc the srnoothcd  epoch state stochastic parameters and state parameters rcspcc-
tivcly and y. rcprcscnts  all the other constant pararnctcrs.

A properly constrained apriori  SRII$ matrix is obtained by first triangularizing  and inverting
the portion of the apriori  covariancc  corresponding to the state and stochastic pararnctcrs.  ‘J’hc
remainder of the SRI]”  matrix corresponding to all the constant parameters is filled in with zeros.



.

‘1’hc  initial apriori  covariancc  on i,hc state, stochastic parameters and constant estimated parameters
is thus given try

[ 1tip iipr o
IL(L)) = o R* o (99)

0 0 0

For each state and stochastic parameter, a dummy mcasurcmcnt  is processed of the form

,&=x —xo (loo)

‘J’bus, the data partials for each of these dummy measurements has 1 corresponding to the current
state parameter and -1 corresponding to the smoothed epoch state parameter. ‘J1hc data weight is set
equal to a large numtrcr  forcing the apriori  correlation bctwccn the actual  and smoothed parameters
to he as C1OSC to unity as possible. The apriori  covariancc  on the remaining constant parameters
may bc applied when the solution is gcncratcd  after all the mcasurcmmrts  have been proccsscd.  ‘J’hc
initial apriori  covariancc  after the dummy rncasurcmcnts  have been proccsscd  is given by

[

Rpo  Rporo Iipoy
It(to) = o Itro Iizog 1 (102)

0 0 0

All the rneasurcmcnts  are then proccsscd and the SRIF  matrix propagated to the terminal epoch (tf).
‘J’hc terminal SRllI’ matrix is combined with t}lc apriori  on the constant parameters and a solution
generated as dcscribcd  above. At this tirnc, we have a filtered best estimate of the final state and
stochastic parameters, a srnoot}lcd  best cstirnatc  of the initial epoch state and stochastic parameters,
and a best estimate of the constant parameters, For many applications this is all wc need because
the direct  dynamic effect of tbc stochastic parameters on the state is insignificant. However, for some
apl)lications,  wc need the complctc  time history of the state and stochastic parameters and this is
obtained by smoothing. In the conventional discrete SRI 1 formulation, smoothed best estimates
of state and the stochastic parameters arc obtained by smoothing backwards from the final filtered
solution. Since wc have available solutions at both ends of the data arc, wc have the option of
s]rroothing forward or backwards, A forward smoothing algorithm is highly desirable since wc would
not need to propagate the state backwards in tirnc.

Wc start with the terminal SRIF  matrix and extract the sub-matrix associated with the constant
y pararnctcrs recalling that these arc headed by srnoothcd  epoch state solutions of the state and
stochastic pararnctcrs.  ‘J’}lrrs  wc have for the initial apriori  smoothing data equation

[1

PO
R.n,(io)  20 =  rjo

Y.
(103)

and t})c dimension of the SRI] matrix has been reduced by the number of state and stochastic
pararnctcrs.  Next, wc integrate the square root SRIF  matrix from to to the time of the first filter
interrupt (t] ), For the continuous process noise update, the frltcr interrupt times  arc coincident
with data point processing tirncs. For the discrete process noise update, i,hc filter interrupt times
arc coincident with the process noise update times.

(105)
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WC thus have for the case of a discrctc  process noise update,

[1PO
x] =  io
Y.

and this data equation may bc triangularizcd and partitioned to make
pararnctcrs defined at il.

I 0 0 0

0 0 R;,

0 0 0

Po

PI

xl

Y.

(106)

oom for the stochastic

(107)

In the notation used here, the SRll~ matrix clcmcnts  chanze  as information or noise is added to the. .
systcm or tbc matrix is rctriangularizcd. ]ntcgcr subscripts and superscripts denote the epoch of the
Sli,lF matrix clcmcnt and a minus superscript indicates values before the smoothing update. ‘l’he
asterisk identifies clcmcnts that arc introduc.cd for smoothing. ‘1’hc above data equation is combined
with the data equation saved previously during filtering,

(108)

to give the SRI1 matrix after the smoothing update is pcrforrncd at i]

- R;fJ R$ R;; R;: -

0 I{,p, Iipr, Itpy ,

0 R*PI 1{=, Ii*y ,

0 0 0 Iiyc .

‘1’hc SRllI’ matrix at t] is integrated to the time of the next filter interrupt (tz). After expanding to
rnakc room for the stochastic parameters at tz wc have

Po

PI

m

X2

Y.

= rjl (109)

(110)

‘J’his data equation is cornbincd with the data equation saved during filtering for smoothing at tz
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and after triangularizing  wc have

Po

PI

P2 =  62

X2

-Yc -

(112)

,

-R;~ 1$; It;: 1$; 1$:

o 1$~ R;; R;: 1$;

o 0 lip, &2 Itpg,

o 0 Iirp= Itz, R*V2

o 0 0 0 Itwc

11’inallv. since wc now have all the data equations that involve p] cornbincd into one SR1lI’  matrix,
wc rn;y  solve for pl. Solving for P1 invol~cs inverting the SRllI’ matrix and multiplying times  the
right  side. The values of the stoc}]astic parameters (pl ) arc written to a file for usc in subsequent
filter  iterations. “l’he top rows corresponding to p. arc discarded and wc continue on to the next
data point  continuing in this fashion until wc reach the final data J>oint. g’hc smoothing algorithm
for the case of continuous process noise is similar to that dcscribcd  above only the SRI1~ matrices
must be adjusted to reflect the mapping of stochastic parameters by numerical integration.

NUMERICAL INTEGRATION OF SIHF MATRIX

‘J’}]c continuous SRI1  data processing algorithm involves mapping the Sli,lF matrix from t}lc
t,imc of a discrete data or process noise update to the time of the next data point or process
noise update, The mapping is accomplished by numerical integration of the SRIF  matrix differen-
tial equation. ‘l’he numerical integration is performed with a suitable algorithm. The fifth order
Rungc-Kutta-lkhlbcrg  method with error control has been successfully crnploycd. ILccall the matrix
diflcrcntial  equation derived above for the SRllI’ and discard the data update tcrrn.

Consider the following partition.

where ltd corresponds to the dynamic pararnctcrs  and the matrix ~’d contains only the rows of 1’
corresponding to the dynamic parameters. ‘1’his equation simplifies to

We only have to integrate the top rows of the Sllllp matrix corresponding to the dynamic parameters
and the derivative is a function of only the }{d partition ~f the SRIIP matrix. For the simple  case of
exponentially correlated process noise wc have,



Q.

and G is the identity matrix.

C O N C L U S I O N

A continuous mat,rix differcntia]  equation for the SIIIF has been derived and a computer al~o-
rithm developed to implcmcrrt  t}lis filter. ‘1’h~ filter alg?~rithm performs the mapping of state aid
process noise by numerical integration of tllc Sltll’ matrix irnd admits  data via a discrete least square
update.

Accuracy, computational cfTicicncy, memory rcquircmcnts  and simplicity of design arc compared
with other filter algorithms. ‘J’}lis  comparison consisted of comparing the filter algorithms at the
equation lCVC1.  A more rigorous comparison of filter algorithms is being pursued that involves
parallc]  implementation. A preliminary evaluation of these competing criteria reveals no significant
difi’crcnccs. IIowcvcr, t}lc continuous SRIF is cxpcctcd  to out pcrforrn discrctc  filt,crs with regard to
accuracy and memory rcquircrncnts  bccausc  there is no need to compute a state transition matrix
and error control may bc placed directly on the clcmcnts  of the SILII+’ matrix. Simplicity of design
seems to favor the continuous SRIl~’ particularly when the sarnc numerical integration algorithm
used for the state propagation is used to integrate the SIUI’ matrix.

‘l’he integration of process noise makes t}lc continuous SRIF somewhat computationally  inef-
ficient.  IIowcver, an exact result is otri,aincd and discrete filters only approximate the integration
of process noise. When process noise is admitted to tbc continuous filter as discrctc  updates, the
computational cfflcicncy  is cornparab]c  to the discrctc  filter implcmcntatiorr.
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